Differential regulation of stem cell factor mRNA expression in human endothelial cells by bacterial pathogens: an in vitro model of inflammation.

نویسندگان

  • A Koenig
  • E Yakisan
  • M Reuter
  • M Huang
  • K W Sykora
  • S Corbacioglu
  • K Welte
چکیده

Production of hematopoietic growth factors by endothelial cells plays a pivotal role during inflammatory processes. Stem cell factor (SCF) is known to be expressed constitutively in endothelial cells. To investigate the regulation of this cytokine expression by inflammatory stimuli, we cocultured human umbilical vein endothelial cells (HUVEC) with various gram-negative bacterial strains (Escherichia coli, Yersinia enterocolitica, Chlamydia trachomatis, and Neisseria meningitidis, respectively). Experiments were performed with bacterial concentrations ranging from 10(2) to 10(7) bacteria/mL for 3 hours. SCF-specific mRNA expression was studied using Northern blot analysis. Stimulation with the enteropathogenic bacterial strains Y enterocolitica and E coli resulted in a significant concentration-dependent increase of SCF mRNA expression. Similar results were obtained in coculture experiments with N meningitidis. As shown in experiments with E coli, the accumulation of SCF transcripts was also time-dependent. In contrast, coculture of HUVEC with the intracellular gram-negative strain C trachomatis had no effect on SCF mRNA expression. To elucidate the role of the gram-negative bacterial cell wall components, we stimulated HUVEC with bacterial lipopolysaccharide (LPS). LPS induced a maximal SCF mRNA accumulation within 2 hours followed by decrease of SCF-specific transcripts to the basal level after 24 hours. In addition, we exposed HUVEC to the classical inflammatory cytokine interleukin-1 alpha (IL-1 alpha). Kinetic experiments showed a similar pattern of regulation with an increase of SCF mRNA within 2 hours, persisting up to 12 hours, and a decrease to basal transcription after 24 hours. From these data, we conclude that SCF expression is regulated by inflammatory stimuli, such as IL-1 alpha and bacterial pathogens, suggesting an important role of SCF during inflammation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression

New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...

متن کامل

Fluvoxamine inhibits some inflammatory genes expression in LPS/stimulated human endothelial cells, U937 macrophages, and carrageenan-induced paw edema in rat

Objective(s): Fluvoxamine is a well-known selective serotonin reuptake inhibitor (SSRI); Despite its anti-inflammatory effect, little is known about the precise mechanisms involved. In our previous work, we found that IP administration of fluvoxamine produced a noticeable anti-inflammatory effect in carrageenan-induced paw edema in rats. In this study, we aimed to evaluate the effect of fluvoxa...

متن کامل

Investigation of FLK-1 Gene Expression in Differentiated Mesenchymal Stem Cells, Exposed to Chemical, Mechanical and Chemical-mechanical Factors, in order to Study the Differentiation and its Stability

Background: Mesenchymal stem cells (MSCs) are multipotent cells, capable of differentiating into different cell lines.They can sense their surrounding biochemical and biophysical factors, which play major roles in their differentiation toward different phenotypes. Therefore, the exposure of these cells to endothelial growth factor (VEGF) as well as hemodynamic biomechanical forces, which act on...

متن کامل

Capillary Network Formation by Endothelial Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells

Human bone marrow derived mesenchymal stem cells (HBMSCs) have the potential to differentiate into cells such as adipocyte, osteocyte, hepatocyte and endothelial cells. In this study, the differentiation of hBMSCs into endothelial like-cells was induced in presence of vascular endothelial growth factor (VEGF) and insulin-like growth factor (IGF-1). The differentiated endothelial cells were exam...

متن کامل

Effect of Purification of Human Adipose-derived Mesenchymal Stem Cells on the Expression of vWF Cell Factor Under Chemical and Mechanical Conditions

Introduction: Human adipose-derived mesenchymal stem cells (hADSCs) are easily accessible in the body, and under appropriate conditions, they can be directed toward various phenotypes. Therefore, hADSCs have been considered as a potential cell source for tissue engineering applications. hADSCs are able to differentiate into endothelial cells which covers the interior surface of vessels, in vi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 83 10  شماره 

صفحات  -

تاریخ انتشار 1994